An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming
نویسندگان
چکیده
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.
منابع مشابه
Quadratic Outer Approximation for Convex Integer Programming
We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same Hessia...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملKKT Conditions and Branch and Bound Methods on Pure Integer Nonlinear Programming
Optimization problems are not only formed into a linear programming but also nonlinear programming. In real life, often decision variables restricted on integer. Hence, came the nonlinear programming. One particular form of nonlinear programming is a convex quadratic programming which form the objective function is quadratic and convex and linear constraint functions. In this research designed ...
متن کاملSemidefinite relaxations for non-convex quadratic mixed-integer programming
We present semidefinite relaxations for unconstrained nonconvex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for mediumsized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We us...
متن کاملA Feasible Active Set Method with Reoptimization for Convex Quadratic Mixed-Integer Programming
We propose a feasible active set method for convex quadratic programming problems with non-negativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 135 شماره
صفحات -
تاریخ انتشار 2010